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Abelian hidden subgroup problem

@ Basic concepts in quantum computing
@ Statement of the hidden subgroup problem (HSP)

@ Quantum Fourier transformation

@ Quantum algorithm for HSP

@ Complexity and applications of the algorithm




If we are to understand a system that does a computation we have
to answer two main questions:

© What are the states of the system?

@ How does the system evolve from one state to another?




Deterministic computation
@ The state of the system is [x], where x € {0,1}"
@ The evolution of the system is f : {0,1}" — {0,1}"




Probabilistic computation

@ The state of the system is a formal sum over x € {0,1}":
ZPX[XL
X

where > px =1 and Vx : p, > 0.

@ The evolution of the system is realized by a stochastic matrix

A= (ay):
A: pr[x] — qu[x],

where gy = Ey axy Py -




Quantum computation

@ The state of the system is a is a formal sum (superposition)

over x € {0,1}"
Zax[x],

where 3" |ax]® = 1.

@ The evolution of the system is realized by a unitary matrix

U= (”xy)3
U : Zax[x] — ZBX[X],

where 3, = Zy Uy Oty .




Dirac notation

In quantum computation there is a convention to write vectors
inside angled brackets. Therefore we will write the state of

quantum system as:
W)) = Z Qx |X>
X

Bra and ket vetors

@ |7)) - column vector with components ay
@ (1| - row vector with components @x (dual of 1)
@ (1|¢) - inner product of vectors 1 and ¢




Example with standard basis vectors of C?

(o)

Another example

A\




Measurement

Descriptive definition
Measurement with respect to some given orthonormal basis

B=/{|b1),|b2),...,|bn)} of the state space of some quantum
system, when performed on a state
n
) = oi|by)
i=1

(where =7, |vj]? = 1) gives i with probability || and leaves the
system in a state |b;).




Abelian Hidden Subgroup Problem (HSP)

We are given:
@ a finite Abelian group (G, +)

@ quantum black box for function f : G — X which is hiding
some unknown subgroup H (f is constant and distinct on
cosets of H).

Our goal is to determine the subgroup H.

lx) —— — |x)
=
|y ——= — 6@ f(x))

Classical black box Quantum black box

Figure: Black boxes for classical and quantum computing



Quantum Fourier transformation (QFT)

Definition

Quantum Fourier transformation (QFT) over an Abelian group G
is defined as a linear map that acts on basis vectors |g), g € G in
the following way:

> v(g) vy,

»eEG

& el

where G is the set of irreducible representations of the group G.

QFT is a unitary transformation.




Quantum Fourier transformation (QFT)

QFT acts on basis states as follows:

1
lg) — m%w(g) [¥) 5

|G| = # of conjugacy classes of G = |G|
Therefore we can identify irreducible representations with group
elements. It turns out that there is a natural way how to do that.

Example

Let G = Z, (cyclic group). Then G = {¢:(g) = e*™'&/"|t € G}
and QFT acts on basis states ar follows:

1 n—1 )
’g> — % Z e27r1tg/n ’t)
t=0




But how do we identify irreducible representations of Abelian
group G with its elements, if G is not cyclic?

Structure theorem
We know that every finite Abelian group G can be expressed as
G="2Zn XZLp, % ... X ZLp,

Therefore for Abelian group G we have:

o g | & | tk8k
27‘(‘[( o +n2 +- i

ti, 8 € Zn,—}a

6;_{%r(g)_e

where g = (g1,82,-.-,8k) and t = (t1, ta, .. ., tx) are elements of
group G. We identify v, with ¢.




Quantum algorithm for HSP

Step 1 Construct a uniform superposition over group elements in
the first register:
lp1) = Z g) |0

geG

Step 2 Query the black box Qr with the state constructed in
Step 1:

|p2) = Z g) [0 Z Qr lg)10) =

gEG gEG

Zlg )06 f( Zlg

geG geG



Quantum algorithm for HSP

State after Step 2:
p2) = —=>_ lg) |f(g))
g€t

Step 3 Measure rightmost register in basis B, = {|x)}xex. With
probability p, = |H| /|G| after measurement the state collapses to

lp3.r) = Z\r+hyf ( Z|r+h) r))

heH heH

where r € R (the set of the representatives for the cosets of
subgroup H).
We can discard the last register and redefine |¢3 ) as follows:

1
lp3,r) = W Z [r+h)



State after Step 3:
‘¢3r = Z‘ +h
VI heH

Step 4 Apply quantum Fourier transformation (QFT) to state
obtained in Step 3:

|904,r> = QFT |§03,r> \/W Z Z w r+ h W)

heH yeG
N/44,§j'w ) ) (:vfgggﬂ) )

- X o

veG/H



State after Step 3:

lp3,r) = Z\r—kh

hGH

Step 4 Apply quantum Fourier transformation (QFT) to state
obtained in Step 3:

’@4,r> = QFT |<)03,r> \/W Z Z w r+ h W

heH TZJGG

- o (m;w )

Now let us compute

Zw

hEH

weG/H



State after Step 4:
H
o) = 3 ;(;'¢(r) )
weG/H

Step 5 Measure the state [p4,r) in basis By = {[¢)},,c5. We get
outcome P € E/T—I with probability

2
B AL RN



Let us review the steps we have done so far.

Oy B, QFT By
1) o) ls,) |¢4:J‘> |¢5,1-,m>
p=|Hl/|G] p=IHI/IG] p=lHIIGI
rER rER reR

L.’/Ea}{\

Figure: Intermediate states during the execution of quantum algorithm
for Abelian hidden subgroup problem.

The state after Step 5 is:
lps) = |¢)

with probability |R| - p, = |H|/|G|, where ¢ € E/T—I (irreps trivial
on H).



Step 6 Repeat ¢ + 4 € O(log(|G|)) times steps 1 to 5, where
c=>"!_1cand |G| =T]'_; pS. Each time we sample uniformly
from those irreducible representations of G which are trivial on H.
After ¢ + 4 iterations we have enough information to output the
full set of the generators of H with probability at least 2/3.



Complexity of Quantum HSP algorithm

Both query and time complexities for quantum algorithm are
polynomial in log(|G|), which is significantly smaller than classical
complexities.

Applications
@ Order Finding

@ Shor's Factorization algorithm with time complexity
O(log® N). At the same time best known classical

(probabilistic algorithm) runs in time 0(2\/@)

@ Discrete logarithm
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